> 数学 >
求坐标的曲面积分:∫Γ(x²+y²+z²-a²)dx+zdy-ydz
其中Γ是空间曲线弧x=kt,y=acost,z=asint上对应t 从0到π的一段弧
拜托了~
人气:213 ℃ 时间:2020-08-15 03:24:30
解答
x = kt,dx = k dt
y = a cost,dy = - a sint dt
z = a sint,dz = a cost dt
t:0→π
∮Γ (x² + y² + z² - a²)dx + zdy - ydz
= ∫(0→π) [(k²t² + a² cos²t + a² sin²t - a²)(k) + (a sint)(- a sint) - (a cost)(a cost)] dt
= ∫(0→π) (k³t² - a²) dt
= (1/3 * k³t³ - a² t):(0→π)
= (1/3)k³π³ - a²π
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版