动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后,两点相距20个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)
(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动4秒时的位置;
![](http://hiphotos.baidu.com/zhidao/pic/item/3801213fb80e7becf0c5ee502c2eb9389b506b60.jpg)
(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;
(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从A点位置出发向B运动,当遇到B后,立即返回向A点运动,遇到A点后立即返回向B点运动,如此往返,直到A追上B时,C立即停止运动.若点C一直以15单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.
(1)设A的速度是x,则B的速度为4x,由题意,得
4(x+4x)=20,
解得:x=1,
∴B的速度为4,
∴A到达的位置为-4,B到达的位置是16,在数轴上的位置如图:
![](http://hiphotos.baidu.com/zhidao/pic/item/e4dde71190ef76c617cd169a9e16fdfaaf516760.jpg)
答:A的速度为1;B的速度为4.
(2)设y秒后,原点恰好在A、B的正中间,由题意,得
16-4y=y+4
y=
.
答:
秒后原点恰好处在两个动点正中间;
(3)设A追上B时间z秒,由题意,得
(4-1)z=2(+4)解得:z=
,
∴C点行驶路程为:
15×=64.
答:点C从开始到停止运动,运动的路程是64单位长度.