>
数学
>
求积分∫(arcsinx)dx/[(1-x^2)^(1/2)],其中积分上限是1,积分下限是0,
人气:367 ℃ 时间:2020-01-11 12:35:23
解答
∵∫arcsinxdx/√(1-x²)=[(arcsinx)²]│-∫arcsinxdx/√(1-x²)(应用分部积分法) ==>2∫arcsinxdx/√(1-x²)=[(arcsinx)²]│(把∫arcsinxdx/√(1-x²)移项) ∴∫arc...
推荐
∫√(1-x^2)dx 积分上限1 下限0 求定积分
积分.求积分∫x^3×√(1-x^2)dx 上限是1,下限为0.
定积分∫arcsinx/(x^2*√1-x^2)dx,下限1/2,上限√(3)/2
求数学积分∫sqrt(1-x^2)*arcsinx dx
∫x arcsinx dx积分
两数和为3,积为-10 求这两个数
用英语简单描写你的房间
以我的卧室写一篇英语作文
猜你喜欢
carefully
After paying 1000 dollars ____,you will all become full memebers of our club A each B all c every
Our class has a map of the world (改为同义句)
The baby didn't cry any more when she saw her mother.同义句
How do you go to school,on foot or by bus?
时间旅行的悖论
设f(x)=ax7+bx5+cx3+dx+5,其中a,b,c,d为常数.若f(-7)=-7,则f(7)=_.
计算1-3+5-7+9-11+…+97-99.
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版