y'=1/(x+√(a^2+x^2)) *(x+√(a^2+x^2))'
(x+√(a^2+x^2))'=x'+[√(a^2+x^2)]'=1+[√(a^2+x^2)]'
√(a^2+x^2)=(a^2+x^2)^(1/2)
所以[√(a^2+x^2)]'=1/2*(a^2+x^2)^(1/2-1)*((a^2+x^2)'
=1/2*(a^2+x^2)^(-1/2)*2x
=x/√(a^2+x^2)
所以y'={1/[x+√(a^2+x^2)]}*[1+x/√(a^2+x^2)]
={1/[x+√(a^2+x^2)]}*[x+√(a^2+x^2)]/√(a^2+x^2)]
=1/√(a^2+x^2)