>
数学
>
如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE,连接BF,CE.试判断四边形BECF是何种特殊四边形,并说明理由.
人气:147 ℃ 时间:2019-09-10 08:56:49
解答
四边形BECF为平行四边形.
证明:连接CE.
∵∠CFD=∠BED,∠CDF=∠BDE,BD=CD,
∴△CDF≌△BDE(AAS),
∴BE=CF,
又∵CF∥BE,
∴四边形BECF为平行四边形.
推荐
如图,等腰直角△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD于F交AB于E,求证:∠CDF=∠BDE
已知,等腰直角三角形ABC中,角ACB=90度,D是BC的中点,CE垂直AD于F交AB于E,求证:角CDF=角BDE
在三角形ABC中,D是BC边的中点,F.E分别是AD及其延长线上的点,CF平行BE.求证:三角形BDE全等于三角形CDF
如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE,连接BF,CE.试判断四边形BECF是何种特殊四边形,并说明理由.
如图,等腰三角形ABC中,ABC=90°,AC=BC,D为BC的中点,CE AD,垂足为F,试说明CDF=BDE
在消费者均衡点以上的无差异曲线的斜率大于预算线的斜率吗?为什么?
西欧和日本的经济恢复和发展过程中共同的因素有哪些?
简述蛋白质分离的常用方法及其原理,
猜你喜欢
我希望可以具体点的.
有甲乙两桶油甲重40千克乙重35千克从甲桶到多少有在乙桶使乙桶油是甲桶的1.5倍
在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.试判断△PDQ的形状,并证明.
he is a famous person in this r____ .(a large area or part)
李白的送别诗(至少2首)
已知,正三棱锥P-ABC中,侧棱PA=a,角APB=30度,D,E分别是侧棱PB,PC上的点,则三角形ADE的周长最小值为...
1、某商场衣服打八折后降了50元,这件衣服原价多少元?
标况下,7点5克某气体A和4克甲烷的体积相等,求A气体的密度;同温同压下,质量相等的锌镁铝分别与盐酸...
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版