一道三元二次方程组问题
已知
x^2+xy+y^2=49
y^2+yz+z^2=36
z^2+zx+x^2=25
求x+y+z
请回答的朋友尽量补上详细过程,谢谢!!!
另,x,y,z都是正数
人气:417 ℃ 时间:2019-09-24 18:25:43
解答
我算出来 (x+y+z)^2=55+36根号2
1式-2式= (x-z)*(x+y+z)=13
2式-3式= (y-x)*(x+y+z)=11
设 y-x=11a 则x-z=13a x+y+z=1/a =>x=(2a^2+1)/3a,y=11a+(2a^2+1)/3a
将x与y代入1式 得到a^2=(55加减36根号2)/433 其倒数(x+y+z)^2=55减加36根号2
但是x,y,z都是正数,所以(x+y+z)^2 > x^2+xy+y^2 >49
所以 舍弃 (x+y+z)^2=55+36根号2
别抄袭!
推荐
猜你喜欢
- 你知道有多少只小猴子吗?有200个桃子 每只小猴分3个,还剩20个.没只小猴子分4个,还差40个.
- Mr Brown is always careful when he _____(drive)
- 若a是方程x²-3x+m=0的一个跟,-a是方程x²+3x-m=0的一个根,则a的值为?
- 英语翻译
- 用又说又笑,明月当空,嫦娥奔月造句,小学三年级水平
- 椭圆的准线是多少啊.急
- 一个袋子里有红黄白三种颜色的球各10个,至少拿出多少个球才能保证有4个球是同色的?
- 用滑轮组匀速提起一个重为30N的物体,物体在10S内竖直上升1m,人拉绳的功率为6w.