| ex |
| ex+1 |
∵函数y=f(x)的导函数是奇函数.
∴f′(-x)=-f′(x),解得a=
| 1 |
| 2 |
| ex+1−1 |
| ex+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| ex+1 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)由(1)f′(x)=
| ex |
| ex+1 |
| 1 |
| ex+1 |
当a≥1时,f′(x)<0恒成立,
∴当a≥1时,函数y=f(x)在R上单调递减;
当0<a<1时,由f′(x)>0得(1-a)(ex+1)>1,即ex>−1+
| 1 |
| 1−a |
| a |
| 1−a |
∴当0<a<1时,y=f(x)在(ln
| a |
| 1−a |
在(−∞,ln
| a |
| 1−a |
故当a≥1时,函数y=f(x)在R上单调递减;
当0<a<1时,y=f(x)在(ln
| a |
| 1−a |
| a |
| 1−a |
