三角形ABC中,O是AC边上的一个动点,过O作直线MN//BC,设MN交角BCA的平分线于E,交角BCA的外角平分线于F.
1)求证:EO=FO.(2)O运动到何处时,四边形AECF是矩形,并证明
人气:393 ℃ 时间:2019-10-19 00:27:15
解答
(1)证明:∵CE是∠BCA的平分线
∴∠BCE=∠ACE
又∵MN||BC
∴∠BCE=∠ACE=∠CEN
得出EO=CO
同理可得CO=FO
∴EO=FO
(2)当O是AC中点时,四边形AECF是矩形
推荐
- 如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角∠ACG平分线于点F. (1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形
- 如图,在三角形ABC中,点O是Ac边上的一个动点,过点0作直线MN平行于BC,设MN交角BCA的平分线干点E,交角BCA的外角的平分线于点F.(1)求证:OE二OF(2)当点O运动到何处时,四边形AECF是矩形并说明理由
- 如图所示,在三角形ABC中,点O是AC边上的一个动点,过点O做直线MN平行于BC,设MN交角BCA的平分线于点E,交角BCA的外角平分线于点E、F.)求证:OE=OF; (2)当点O在何处时,四边形AECF是矩形?(3) 在(2)的条件下,
- 如图,在三角形ABC中,点O是AC的边上的一动点,过点O作直线MN//BC,设MN交角BCA的平分线于点E,交角BCA的
- 在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN平行BC,设MN交角BCA的角平分线于点E,交角BCA的外角
- 这难道是天计算了如此精确的距离?改陈述句
- 15分之8的分子与分母都加上相同的数后,约分是10之9,加上的数是
- 3m(2x+y)的平方减去3mn的平方 因式分解
猜你喜欢