已知点A(1,根号2)是离心率为根号2/2的椭圆C:x2/b2+y2/a2=1(a>b>0)上的一点,斜率为根号2的直线BD交椭圆C于B,D两点,且A,B,D三点不重合.
1.)求椭圆C的方程
2.)三角形ABD的面积是否存在最大值?说明理由
3.)求证直线AB,AD的斜率之和为定值
人气:335 ℃ 时间:2019-10-23 03:19:33
解答
推荐
- 已知椭圆C:X2/A2+Y2/B2=1(A>B>0)的离心率为根号2/2,且曲线果点(1,根号2/2)
- 已知椭圆C:x2/a2+y2/b2=1的离心率为根号2/2,且曲线过点(1,根号2/2)
- 已知椭圆C a2分之x2+b2分之y2=1(a>b>0)的离心率为2分之根号3,直线过点(1,2分之根号3)
- 已知椭圆c:x2/a2+y2/b2=1的离心率为根号3/2,过右焦点f且斜率为k的直线与c交与A.B两点,若AF=3FB.求k
- 设椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F,离心率为根号3/3,
- 一环形线圈放在匀强磁场中,设第1s内磁感线垂直线圈平面(即垂直于纸面)向里,如图甲所示.若磁感应强度B随时间t变化的关系如图乙所示,那么第3s内线圈中感应电流的大小与其各处所受
- 英译中I dont know why i told this to you today,but hope you will not let any person eles knows
- 若|a^n|=½,|b|^n=3,求(ab)^2n的值
猜你喜欢