P为平面M外一点,PO垂直于平面M于O,PA,PB为平面M的斜线,若PA=8,PB=5,OA:OB=4:根号3
求:1.求OP的长
2.若角AOB=90°,求角APB的大小
人气:203 ℃ 时间:2020-03-17 12:27:31
解答
1、因为OA:OB=4:根号3
所以可以设OA=4m,OB=(根号3)m,PO=x
又由题意知道△POA与△POB为直角三角形
所以有 X²+(4m)²=8².①
X²+[(根号3)m]²=5².②
联立①②有m²=3,有X²=16
则X=4或者X=-4(舍去)
所以op的长为4
2、因为∠AOB=90°
所以三角形为直角三角形
由题1有m²=3,则m=根号3
OA=4(根号3)
OB=3
所以AB²=OA²+OB²=48+9=57
由余弦定理有cos∠APB=[(AP)²+(BP)²-(AB)²]/[2(AP)*(BP)]=(64+25-57)/(2*8*5)=32/80=2/5
故而∠APB=arccos(2/5)
推荐
- 从平面a外一点P分别引平面a的垂线PO和斜线PA,PB,若PA=8,PB=5,且OA:OB=4:√3,则点P到平面a的距离等于
- 过三角形ABC所在平面外一点P,作PO垂直平面,连接PA,PB,PC,PA垂直PB,PB垂直PC,PC垂直PA,则O是三角形ABC什么
- 如图,A(4,0),B(0,4),⊙O经过A、B、D三点,点P为OA上一动点(异于O、A),求PB−PAPO的值.
- 过平面a外一点P的斜线段PA的长是过这点的垂线段PB长的2根号3/3倍(A,B属于a)求斜线PA与平面a所成角的大小
- 如图,在三棱锥P-ABC中,PA=PB=6,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC. (Ⅰ)求证:PA⊥BC; (Ⅱ)求PC的长度; (Ⅲ)求二面角P-AC-B的大小.
- 根毛细胞最大的特点是表皮细胞形成的什么?
- 如何提高数学做练习速读
- 观沧海中表现作者雄心壮志诗句
猜你喜欢