设随机变量序列X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,则对任意实数x,lim(n->∞)P{{(∑Xi-nμ)/[n^(1/2)*σ]}>x}=?
人气:243 ℃ 时间:2019-08-20 11:02:44
解答
由林德贝格中心极限定理
lim(n->∞)P{{(∑Xi-nμ)/[n^(1/2)*σ]}>x}=1-Φ(x).
其中Φ(x)是标准正态分布的分布函数.
推荐
- 已知随机变量X1,X2……Xn相互独立,且每个Xi的期望都是0,方差都是1,令Y=X1+X2+……+Xn,求E(Y^2)
- 设X1,X2...Xn 独立同分布的随机变量,证明X=(1/n)* ∑Xi 和∑(Xi-X)^2 相互独立.
- 设随机变量X1,X2,---,Xn独立同分布且具有相同的分布密度,证明:P{Xn>max(X1,X2,...,Xn-1)}=1/n
- 设随机变量X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,设x=1/n∑xp,求Ex,Dx,xi与x的相关系数
- 设X1,X2……Xn是相互独立的随机变量序列且他们服从参数λ的泊松分布,则由中心极限定理知
- specialized mental capacities are harnessed to acquiring and storing mental representations of linguistic objects which,
- 轮毂直径30厘米,轮胎最大直径44厘米,轮胎宽度8厘米.不知道是哪种尺寸轮胎?
- 标有“220V 60W”和“36V 60W”的甲、乙两个灯泡,都在额定电压工作,两灯泡工作2h消耗的电能( ) A.甲多 B.乙多 C.一样多 D.无法比较
猜你喜欢