过抛物线y²=4x的焦点F的直线交抛物线于A、B两点,求|AF|·|FB|的取值范围-
(要求步骤具体,本人高二学生,别用高数,公式之类的,看不懂)
人气:481 ℃ 时间:2020-03-19 18:14:32
解答
[[[注:用"参数法" ]]]
解
由题设,两点A,B均在抛物线y²=4x上,
故可设A(a², 2a),B(b², 2b),(a,b∈R, a≠b)
显然,焦点F(1,0)
[[[1]]]
易知,三点A, F, B共线,
两条直线AF, BF斜率相等.
∴(2a)/(a²-1)=(2b)/(b²-1)
a(b²-1)=b(a²-1)
ab(b-a)+(b-a)=0.
∴ab=-1.
[[[2]]]
由抛物线定义可知
|AF|=a²+1. |BF|=b²+1
由基本不等式可得:
|AF|=a²+1≥2|a|
|BF|=b²+1≥2|b|
两式相乘,结合ab=-1可得:
|AF|×|BF|≥4
等号仅当|a|=|b|=1,且a+b=0时取得
∴取值范围为[4, +∞)
推荐
- 过抛物线y²=4x的焦点F的直线交该抛物线于A B两点,若AF=3,则BF=?
- 已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点. (1)若|AF|=4,求点A的坐标; (2)若直线l的倾斜角为45°,求线段AB的长.
- 过点P(-2,0)作抛物线y²=4x的直线,交于A,C两点,过抛物线焦点F,连接AF,CF,分别延长
- 已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|=_.
- 过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,△AOB面积.
- 怎么解初中数学动态问题
- 当物质发生化学变化时,分子变了,变成新的分子,然后 再重新组合成新的 构成新的物质.可见,
- 把一元二次不等式转化成与之等价的一元一次不等式组
猜你喜欢