> 数学 >
A B均为n阶矩阵,|B|不等于0,A+E的逆矩阵=B+E的转置,证明:A是可逆的.
人气:252 ℃ 时间:2020-04-30 02:04:33
解答
(B+E)转置=B转置+E转置=B转置+E
又(A+E)^(-1)=(B+E)转置
所以(B+E)转置(A+E)=(B转置+E)(A+E)=E,B转置A+B转置+A+E=E,(B转置+E)A=-B转置,|B+E||A|=|-B|
因为|B|不等于0,所以|-B|不等于0,推出|A|不等于0
所以A可逆
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版