> 数学 >
设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并求A^-1+B^-1的逆阵,
人气:394 ℃ 时间:2019-10-17 07:06:15
解答
由A,B可逆知 A^-1+B^-1 = A^-1(A+B)B^-1
由已知 A+B可逆,所以 A^-1+B^-1 可逆 (可逆矩阵的乘积仍可逆)
且(A^-1+B^-1)^-1 = [A^-1(A+B)B^-1]^-1 = B(A+B)^-1A
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版