a |
q |
a |
q |
2 |
q |
2 |
q |
2 |
q |
又a3、a4、a5为等差数列,所以a3+a5=2a4,即
2 |
q |
1 |
2 |
因为三个数是从小到大成等比数列,所以q=
1 |
2 |
所以三个数为,1,2,4.即a3=3,a4=4,a5=5.
所以公差d=1,所以数列{an}的通项公式为an=a3+(n−3)=n,n∈N•.
(Ⅱ)因为bn=
an+1 |
an |
an |
an+1 |
n+1 |
n |
n |
n+1 |
1 |
n |
1 |
n+1 |
所以Tn=(2+1−
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
=2n+1−
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
n |
n+1 |
即数列{bn}的前项和为Tn=2n+
n |
n+1 |