已知F1,F2是椭圆上的两个焦点,P是椭圆上任意一点设三角形PF1F2是外接圆和内切圆半径分别是R,r
若PF1-PF2=8rR,求椭圆离心率
好的一定采纳= =
人气:463 ℃ 时间:2019-10-17 06:20:53
解答
e=1/3首先澄清一点,原题条件有误,既然P是椭圆上任意点,就不可能PF1-PF2=8rR.所以应为PF1*PF2=8rR,是两边之积而不是差,差根本求不出来.不知是提问者抄错了还是打错了.焦点三角形面积=1/2*r(PF1+PF2+F1F2)=1/2*r(2a+...
推荐
猜你喜欢
- 已知X的平方-3X+2=0,求x2+X2分之1的值
- 某人骑自行车上学,若速度为15km/h,则早到15min,若速度为9km/h,则迟到15min,先打算提前10min到达,自行车的速度应为多少?
- 读书不觉已春深 下一句 求
- 在10%的利率下,一元三期的复利现值系数分别是0.9091,0.8264,0.7513,则三年期的年金现值系数是?
- There is a library in our school对a提问
- mghco3和mgco3的溶解度大小比较?
- 筷子是一个杠杆,那么它的支点在哪里?说理由
- 三角形三边之和为10,其夹角的余弦是方程2X^2-3X-2=0的根······