(1)证明:如图,连接OF,∵HF是⊙O的切线,
∴∠OFH=90°.
即∠1+∠2=90°.
∵HF=HG,∴∠1=∠HGF.
∵∠HGF=∠3,∴∠3=∠1.
∵OF=OB,∴∠B=∠2.
∴∠B+∠3=90°.
∴∠BEG=90°.
∴AB⊥CD.
(2)如图,连接AF,
∵AB、BF分别是⊙O的直径和弦,
∴∠AFB=90°.
即∠2+∠4=90°.
∴∠HGF=∠1=∠4=∠A.
在Rt△AFB中,AB=
| BF |
| sin∠A |
| 3 | ||
|
∴⊙O的半径长为2.

| 3 |
| 4 |
(1)证明:如图,连接OF,| BF |
| sin∠A |
| 3 | ||
|