证明:作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN.∵正方形ABCD和正方形ABEF有公共边AB,∴AE=BD.
又AP=DQ,∴PE=QB,
又PM∥AB∥QN,
∴
| PM |
| AB |
| PE |
| AE |
| QB |
| BD |
| QN |
| DC |
| BQ |
| BD |
∴
| PM |
| AB |
| QN |
| DC |
∴PM∥QN,且 PM=QN即四形PMNQ为平行四边形,
∴PQ∥MN.
又MN⊂平面BCE,PQ⊄平面BCE,
∴PQ∥平面BCE.
证明:作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN.| PM |
| AB |
| PE |
| AE |
| QB |
| BD |
| QN |
| DC |
| BQ |
| BD |
| PM |
| AB |
| QN |
| DC |