如图,作△ABQ,使得∠QAB=∠PAC,∠ABQ=∠ACP,则△ABQ∽△ACP.∵AB=2AC,
∴△ABQ与△ACP相似比为2.
∴AQ=2AP=2
| 3 |
∠QAP=∠QAB+∠BAP=∠PAC+∠BAP=∠BAC=60°.
由AQ:AP=2:1知,∠APQ=90°,于是PQ=
| 3 |
∴BP2=25=BQ2+PQ2,从而∠BQP=90°,
过A点作AM∥PQ,延长BQ交AM于点M,
∴AM=PQ,MQ=AP,
∴AB2=AM2+(QM+BQ)2=PQ2+(AP+BQ)2=28+8
| 3 |
故S△ABC=
| 1 |
| 2 |
| ||
| 8 |
6+7
| ||
| 2 |
7
| ||
| 2 |
故答案为:3+
7
| ||
| 2 |

