> 数学 >
证明随机变量不相关
设有连续型随机变量X,概率密度为偶函数,且E(|X|三次方)<无穷,证明X与Y=X方不相关
人气:147 ℃ 时间:2020-09-24 01:42:04
解答
证明,首先由概率密度为偶函数,有E(x)=E(Y)=0
所以相关系数为pxy=COV(x,y)/根号【D(X)*D(Y)】
=COV(x,y)/根号【D(X)*D(Y)】
=E(x-E(x)(y-E(y)))/根号【D(X)*D(Y)】
=E(x)E(Y)/根号【D(X)*D(Y)】
因为由且E(|X|三次方)<无穷知分母不为0
分子为0
所以相关系数为0
X与Y=X方不相关
证毕
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版