> 数学 >
已知直线l:(2k+1)x+(k+1)y=7k+4和圆C:(x-1)²+(y-2)²=25,求证:对任何实数k,
直线l与圆恒有两个不同的交点
人气:228 ℃ 时间:2020-02-03 04:09:39
解答
直线l:(2k+1)x+(k+1)y=7k+4
(2x+y-7)k+(x+y-4)=0
令2x+y-7=0
x+y-4=0
解得 x=3 y=1
即 直线l:(2k+1)x+(k+1)y=7k+4经过定点(3,1)
圆C:(x-1)²+(y-2)²=25
将 x=3 y=1代入
(x-1)²+(y-2)²=4+1=5
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版