答:x^4+2x^3-2x^2-3x+2=(x-1)x^3+3x^3-3x^2+x^2-3x+2=(x-1)(x^3-3x^2)+(x-1)(x-2)=(x-1)(x^3-3x^2+x-2)=(x-1)[x^3-2x^2-(x^2-x+2)]=(x-1)*[(x-2)x^2-(x-2)(x+1)]=(x-1)*(x-2)*(x^2-x-1)=(x-1)(x^3-3x^2)+(x-1)(x-2)
这一步应该是x^3+3x^2吧?答:不好意思,重新解答如下:
x^4+2x^3-2x^2-3x+2
=(x-1)x^3+3x^3-3x^2+x^2-3x+2
=(x-1)(x^3+3x^2)+(x-1)(x-2)
=(x-1)(x^3+3x^2+x-2)
=(x-1)[x^3+2x^2+(x^2+x-2)]
=(x-1)*[(x+2)x^2+(x+2)(x-1)]
=(x-1)*(x+2)*(x^2+x-1)