设直线L:Y=KX+M(其中K,M为整数)与椭圆X平方/16+Y平方/12=1交与不同两点A,B,与双曲线X平方/16+Y平方/12=1交于不同两点C,D,问是否存在直线L,使得向量AB+向量BD=0,若存在,指出这样的直线有多少条?若不存在,请说明理由.(关于高一高二的知识)
人气:360 ℃ 时间:2020-05-20 22:11:01
解答
先改正打字错误:
设直线L:Y=KX+M(其中K,M为整数)与椭圆X平方/16+Y平方/12=1交与不同两点A,B,与双曲线X平方/16-Y平方/12=1交于不同两点C,D,问是否存在直线L,使得向量AC+向量BD=0,若存在,指出这样的直线有多少条?若不存在,请说明理由
把y=kx+m代入
x^2/16+y^2/12=1,化简得
(3+4k^2)x^2+8kmx+4m^2-48=0,
设A(x1,y1),B(x2,y2),
则x1+x2=-8km/(3+4k^2).
把y=kx+m代入
x^2/16-y^2/12=1,化简得
(3-4k^2)x^2-8kmx-4m^2-48=0,
设C(x3,y3),D(x4,y4),
则x3+x4=8km/(3-4k^2).
向量AC+向量BD=0
x3-x1+x4-x2=0
x1+x2=x3+x4
-8km/(3+4k^2)=8km/(3-4k^2),
∴k=0,或m=0.
这样的直线有无限多条.
推荐
- 已知双曲线x22−y22=1的准线过椭圆x24+y2b2=1的焦点,则直线y=kx+2与椭圆至多有一个交点的充要条件是( ) A.K∈[-12,12] B.K∈[-∞,-12]∪[12,+∞] C.K∈[-22,22] D.K∈[-∞,-
- 求以椭圆8分之X的平方+5分之Y的平方=1的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程
- 双曲线与椭圆X平方/27+y平方/36=1有相同焦点,且经过点(根号15,4),求双曲线C的方程
- 双曲线x平方/a平方-y平方/b平方=1的一条渐近线与椭圆x平方/a平方﹢y平方/b=1交于m,n则|mn|=
- 求以椭圆5/x平方+8分之y平方=1的焦点为顶点,且以椭圆的顶点为焦点的双曲线的方程
- 已知OD平分角AOC,OE平分角BOC,且DOE是90°,问,A、O、B三点在一条直线上吗?为什么?
- 根据汉语或首字母提示填写下列单词.
- 造句(按词语的不同意思各造一句):情愿:①心里愿意②宁可、宁愿.情愿①— 情愿②—
猜你喜欢