三个连续正整数,中间一个是完全平方数,将这样的三个连续正整数的积称为“美妙数”.问所有的小于2008的“美妙数”的最大公约数是多少?
人气:232 ℃ 时间:2019-08-22 09:25:51
解答
①任何三个连续正整数,必有一个能为3整除.所以,任何“美妙数”必有因数3.
②若三个连续正整数中间的数是偶数,它又是完全平方数,必定能为4整除;若中间的数是奇数,则第一和第三个数是偶数,所以任何“美妙数”必有因数4.
③完全平方数的个位只能是1、4、5、6、9和0,若其个位是5和0,则中间的数必能被5整除,若其个位是1和6,则第一个数必能被5整除,若其个位是4和9,则第三个数必能被5整除.所以,任何“美妙数”必有因数5.
④上述说明“美妙数”都有因数3、4、和5,也就有因数60,即所有的美妙数的最大公约数至少是60.
另一方面,60=3×4×5,60也是一个“美妙数”,美妙数的最大公约至多是60.
答:所有的美妙数的最大公约数只能是60.
推荐
- 三个连续正整数,中间一个完全是完全平方数,将这样的三个连续正整数的积称为“美妙数”,问所有小于2008
- 两个正整数之和比积小1000,其中一个是完全平方数,求这两个数
- 三个连续正整数,中间一个是完全平方数,将这样的三个连续正整数的积称为“美妙数”,问所有小于2010的美妙数的最大公约数是 ( )
- 三个连续正整数,中间一个是完全平方数,将这样的三个连续正整数的积称为“美妙数”.问所有的小于2008的“美妙数”的最大公约数是多少?
- 3个连续正整数中间1个是完全平方数将这3个连续正整数的积称美妙数问所有小于2010的美妙数的最大公约数是
- C9H20的35个同分异构体的结构简式
- I hope you can finish your task().A.success B.successful C.successful D.succed
- 已知向量OP=(cosθ,sinθ),向量OQ=(1+sinθ,1+cosθ)(θ∈[0,π]),则│PQ│的取值范围是____.
猜你喜欢