∴a>0,△=16-4ac=0,
∴a>0,c>0,ac=4,
∴
| a |
| c2+4 |
| c |
| a2+4 |
=
| a |
| c2+ac |
| c |
| a2+ac |
=
| a |
| c(a+c) |
| c |
| a(a+c) |
=
| 1 |
| c |
| 1 |
| a+c |
| 1 |
| a |
| 1 |
| a+c |
=
| 1 |
| a |
| 1 |
| c |
| 2 |
| a+c |
≥2
|
| 2 | ||
2
|
| 1 |
| 2 |
当且仅当a=c=2时取等号.
故答案为
| 1 |
| 2 |
| a |
| c2+4 |
| c |
| a2+4 |
| a |
| c2+4 |
| c |
| a2+4 |
| a |
| c2+ac |
| c |
| a2+ac |
| a |
| c(a+c) |
| c |
| a(a+c) |
| 1 |
| c |
| 1 |
| a+c |
| 1 |
| a |
| 1 |
| a+c |
| 1 |
| a |
| 1 |
| c |
| 2 |
| a+c |
|
| 2 | ||
2
|
| 1 |
| 2 |
| 1 |
| 2 |