> 数学 >
已知函数f(x)=2cos(x+π/3)[sin(x+π/3)-√3cos(x+π/3)]
对任意x属于[0,π/6],使得m[f(x)+√3]+2=0恒成立,求实数m的取值范围.
人气:421 ℃ 时间:2019-11-02 21:37:54
解答
f(x)=2cos(x+π/3)[sin(x+π/3)-√3cos(x+π/3)]
=4cos(x+π/3)[1/2sin(x+π/3)-√3/2cos(x+π/3)]
=4cos(x+π/3)[sin(x+π/3-π/3)]
=4[cosxcos(π/3)-sinxsin(π/3)]*sinx
=2(cosx-√3sinx)sinx
=2cosxsinx-2√3sin²x
=sin2x+√3cos2x-√3
=2sin(2x+π/3)-√3,在[0,π/6]上,f(x)∈[1-√3,2-√3]
m[f(x)+√3]+2=0恒成立,即[f(x)+√3]=-2/m恒成立,所以1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版