已知定点(3,0),点A在圆x^+y^=1上运动,M是线段AB上的一点,且向量AM=1/3向量MB,则点的轨迹方程为?
答案是(x-3/4)^+y^=9/16
人气:130 ℃ 时间:2019-09-03 07:07:17
解答
求轨迹方程的题一般要设点的坐标,并根据题目条件带入相应的方程
设A(x1,y1),M(x2,y2),带入圆的方程有:x1^2+y1^2=1,
则向量AM=(x2-x1,y2-y1),MB=(3-x2,-y2)
因为向量AM=1/3向量MB,故有:x2-x1=1/3(3-x2) ①,y2-y1=1/3(-y2) ②
由①②有:x1=4/3x2-1,y1=4/3y2
代入x1^2+y1^2=1可得:(4/3x2-1)^2+(4/3y2)^2=1
整理得:(x2-3/4)^2+y2^2=9/16
即M点的轨迹方程是:(x-3/4)^2+y^2=9/16
希望楼主给分吧,
推荐
- 若点A是圆(x-2)^2+(y-2)^2=1上的动点,点B(1,0)且向量AM=向量2MB,求点M的轨迹方程
- 一直一条长为6的线段两端点A.B分别在X.Y轴上滑动,点M在线段AB上且AM:MB=1:2,求动动点M的轨迹方程
- 已知线段AB的端点B的坐标为(0,0),端点A在圆x^2+y^2=4上运动,若向量AM=2MB,求M的轨迹方程.
- 已知点P是圆x2+y2=4上的点,点A(4,0),点M在AP,且向量AM=2向量MP,求点M的轨迹方程.
- 如图,AB是圆O的弦,CD是经过圆O上的一点M的切线.求证:(1)AB//CD时,AM=MB;(2)AM=MB时AB//CD
- 三角形ABC角A=90,AB=AC,M是BC中点,P为BC上任意一点,PE垂直AB于E,PF垂直AC于F,求ME=MF
- 雨下得很大.改为比喻句,怎么改,
- 冲量和动量有什么差别和联系?
猜你喜欢