Q为圆x^2+y^2=4上的动点,另有点A(根号3,0),线段AQ的垂直平分线交半径OQ于P,当Q点在圆周上运动时,求...
Q为圆x^2+y^2=4上的动点,另有点A(根号3,0),线段AQ的垂直平分线交半径OQ于P,当Q点在圆周上运动时,求P的轨迹
人气:141 ℃ 时间:2019-10-11 17:42:30
解答
设P(X,Y),Q动点在圆上可写成 X=2sinΘ Y=2cosΘ
由AQ得垂直平分线可知:向量AQ 设中点为M,PM和AQ垂直可得一个方程.
向量PQ的模等于PA的模:|PO|=|PA|
这2个方程就能得到P的轨迹,你自己动手试试.
推荐
- 已知圆C:x^2+y^2=4内一点A(√3,0)与圆C上一动点Q,线段AQ的垂直平分线交OQ于点P.
- 点A(负根号3,0),B是圆(x-根号3)^+y^=16的动点,AB的垂直平分线与BC交于点E,求动点E的轨迹方
- 【急!】已知点A(根号3,0)Q是圆M=(x+根号3)^2+y^2=16上的动点,线段AQ的中垂线交MQ于点P
- 已知 是定点,Q是圆 上的动点.线段AQ的垂直平分线交于半径OQ于P点.当Q在圆上运动时,求P点的轨迹方程.
- Q为x平方 y平方=1上的动点,A(根号3,0),AQ中垂线和OQ交于P,求P轨迹
- 丑小鸭和我的作文
- 地球半径为R,地面上重力加速度为g,在高空绕地球做匀速圆周运动的人造卫星,其线速度可能为?我算到gr^2 但答案为(gr/2)^2 为什么
- 有两桶油,第一桶油是第二桶油的1.5倍,如果从第一桶油中倒入第二桶4千克,两用油相等
猜你喜欢