高一数学不等式求最值题三道
一.若正数a,b满足ab=a+b+3,则ab的取值范围是?a+b的最小值是?
二,已知x,y>0,x+y=1,求1/x+2/y的最小值.
三,已知x,y是正数,且2x+8y-xy=0,求x+y最小值.
人气:167 ℃ 时间:2020-05-19 00:18:50
解答
1、∵正数a,b∴a+b≥2√ab∵ab=a+b+3∴ab≥2√ab+3解关于√ab的不等式得√ab≥3∴ab≥9同样用均值不等式可得ab≤(a+b)^2/4a+b+3≤(a+b)^2/4解关于(a+b)的不等式得a+b≥6,即a+b的最小值是6.2,∵x,y>0,x+y=1∴1/x+2...
推荐
猜你喜欢
- 已知极限lim(x→∞)(x^2+1)/x+1-(ax+b)=0,求常数a,b
- 一块平行四边形的菜地,底80M,6M,这地共收油菜籽842.24千克,平均没公顷能收多少千克的油菜籽
- 时针和分针在一昼夜重合多少次?
- 等量同种电荷连线中点,电势不为零 为什么
- NaHCO3与Na2CO3反应
- 滴定操作时,为什么经过三十秒不褪色为终点
- 人类改变环境的能力超过其他生物的原因,为什么包括 产生了语言,大脑的发育,能制造工具这三方面?
- 已知:如图,在平行四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,且AE=CG,BF=DH. 求证:△AEH≌△CGF.