> 数学 >
已知F1F2分别为双曲线x^2/a^2-y^2/2=1(a>0)的左右焦点,过F2作垂直于X轴的直线交与AB两点,若F1AB是等边三角形,求此双曲线的渐近线方程
人气:189 ℃ 时间:2019-08-18 21:20:41
解答
x^2/a^2-y^2/b^2=1(a>0b>0)
F1(-c,0.)F2(c,0)
F1AB是等边三角形
∵PF2⊥X轴
∠PF1F2=30度
∴F1F2=√3PF2
PF2=F1F2/√3 =2c/√3
PF1=2PF2=4c/√3
PF1-PF2=2a
∴2c/√3 =2a
c/a=√3
c/a=√[(a^2+b^2)/a^2]=√[1+(b/a)^2]=√3
b/a=±√2
此双曲线的渐近线方程y=±√2x
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版