将f(x)=x^4-5x^3+x^2-3x+4按X-4的乘幂展开:先求出各阶导数
f'(x)=4x^3-15x^2+2x-3.
f''(x)=12x^2-30x+2.
f'''(x)=24x-30
f''''(x)=24.
f'''''(x)=0(由此可知,展开后,余项为0,也就是说,这是无误差展开.)
再求出下列数据:f(4)=-56,f'(4)=21,f''(4)=74,f'''(4)=66,f''''(4)=24
于是f(x)=x^4-5x^3+x^2-3x+4
=-56+21(x-4)+(74/2!)(x-4)^2+(66/3!)(x-4)^3+(24/4!)(x-4)^4
=-56+21(x-4)+37(x-4)^2+11(x-4)^3+(x-4)^4大神,有个问题,我一直打不出次方的符号,你是怎么打出来的?alt+34148=卍
alt+34149=卐
alt+43144=▓
alt+43151=◤
alt+41459=◇
alt+41460=◆
alt+43113=╥
alt+43114=╦
alt+43115=╧
alt+43116=╨
alt+43117=╩
alt+43118=╪
alt+43119=╫
alt+43120=╬
alt+43121=╭
alt+43122=╮
alt+43123=╯
alt+43124=╰
alt+43125=╱
alt+43126=╲
alt+43127=╳
alt+43128=▁
alt+43129=▂
alt+43130=▃
alt+43131=▄
alt+43132=▅
alt+43133=▆
alt+43134=▇
alt+43144=▓
alt+43145=▔
alt+43146=▕
alt+41457=●
alt+41458=◎