直角三角形ABC和三角形ADE中,AB=AC ,AD=AE ,CE 与BD相交于点M,BD交AC于点N.当三角形ABC绕A顺时针旋转时
还能不能证明BD=CE,BD垂直于CE
人气:206 ℃ 时间:2019-08-18 05:11:40
解答
分析:(1)要证明BD=CE,只要证明△ABD≌△ACE即可,两三角形中,已知的条件有AD=AE,AB=AC,那么只要再得出两对应边的夹角相等即可得出三角形全等的结论.我们发现∠BAD和∠EAC都是90°加上一个
∠CAD,因此∠CAE=∠BAD.由此构成了两三角形全等中的(SAS)因此两三角形全等.
(2)要证BD⊥CE,只要证明∠BMC是个直角就行了.由(1)得出的全等三角形我们可知:
∠ABN=∠ACE,三角形ABC中,∠ABN+∠CBN+∠BCN=90°,根据上面的相等角,我们可得出∠ACE+∠CBN+∠BCN=90°,即∠ABN+∠ACE=90°,因此∠BMC就是直角了.证明:(1)∵∠BAC=∠DAE=90°
∴∠BAC+∠CAD=∠DAE+∠CAD
即∠CAE=∠BAD
在△ABD和△ACE中
{AB=AC,∠CAE=∠BAD,AD=AE
∴△ABD≌△ACE(SAS)
∴BD=CE
(2)∵△ABD≌△ACE
∴∠ABN=∠ACE
∵∠ANB=∠CND
∴∠ABN+∠ANB=∠CND+∠NCE=90°
∴∠CMN=90°
即BD⊥CE.点评:本题考查了等腰直角三角形的性质,全等三角形的判定等知识点,利用全等三角形得出线段相等和角相等是解题的关键.
推荐
- 如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N. 证明:(1)BD=CE;(2)BD⊥CE.
- 如图,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,CE与BD相交于点M,BD交AC于点N.试猜想BD与CE有何关系?并证明你的猜想.
- 如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE.
- 如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N. 证明:(1)BD=CE;(2)BD⊥CE.
- 如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N. 证明:(1)BD=CE;(2)BD⊥CE.
- 哪些是映射,那些映射是函数,那些不是?为什么?(1)设A={1,2,3,4},B={3,5,7,9},对应关系是f(x)=2x=+1,x属于A;(2)设A={1,4,9},B={-1,1,-2,2,-3,3},对应关系是‘A中的元素开平方’
- 这三张卡片上分别写着2,4,5. (1)小红为什么说不公平?积是单数的可能性是多少? (2)把这三个数字换成3,4,5,你觉得公平吗?
- 把一个底面直径是8厘米,高10厘米的圆柱体,割拼成一个近似的长方体后,表面积增加了多少平方厘米?
猜你喜欢