令f'(x)>0,解得x>
| 1 |
| e |
令f'(x)<0,解得0<x<
| 1 |
| e |
从而f(x)在(0,
| 1 |
| e |
| 1 |
| e |
所以,当x=
| 1 |
| e |
| 1 |
| e |
(II)若2f(x)≥g(x),则a≤2lnx+x+
| 3 |
| x |
设h(x)=2lnx+x+
| 3 |
| x |
则h′(x)=
| 2 |
| x |
| 3 |
| x2 |
| x2+2x−3 |
| x2 |
| (x+3)(x−1) |
| x2 |
∵x∈(0,1)时,h′(x)<0,h(x)单调递减,
x∈(1,+∞)时,h′(x)>0,h(x)单调递增,
∴h(x)min=h(1)=4
故a≤4
即实数a的取值范围为(-∞,4]
证明:(III)若lnx>
| 1 |
| ex |
| 2 |
| ex |
则lnx•x>
| x |
| ex |
| 2 |
| e |
由(I)得:lnx•x≥−
| 1 |
| e |
| 1 |
| e |
设m(x)=
| x |
| ex |
| 2 |
| e |
| 1−x |
| ex |
∵x∈(0,1)时,m′(x)>0,h(x)单调递增,
x∈(1,+∞)时,m′(x)<0,h(x)单调递减,
故当x=1时,h(x)取最大值−
| 1 |
| e |
故对一切x∈(0,+∞),都有lnx>
| 1 |
| ex |
| 2 |
| ex |
