1.设f(x)是定义在实数集上的周期为2的周期函数,且是偶函数.已知当x∈[2,3]时,
f(x)=-x,则当x∈[-2,0]时,f(x)的表达式为 .
A.-3+∣x+1∣ B.2-∣x+1∣ C.3-∣x+1∣ D.2+∣x+1∣
2.当a和b取遍所有实数时,则函数f(a,b)=(a+5-3∣cosb∣)2+(a-2)∣sinb∣)2所能达
到的最小值为 .
A.1 B.2 C.3 D.4
3.对任意实数x,y,定义运算xºy为xºy=ax+by+cxy,其中a,b,c为常数,且等式右端中的
运算为通常的实数加法、乘法运算.已知1º2=3,2º3=4且有一个非零实数d,使得对
于任意实数x均有xºd=x,则d= .
A.-4 B.-2 C.1 D.4
人气:368 ℃ 时间:2020-04-04 20:30:33
解答
1.设f(x)是定义在实数集上的周期为2的周期函数,且是偶函数.已知当x∈[2,3]时,f(x)=-x,则当x∈[-2,0]时,f(x)的表达式为 .A.-3+∣x+1∣ B.2-∣x+1∣ C.3-∣x+1∣ D.2+∣x+1∣当x∈[-2,-1]时x+4∈[2,3],f...
推荐
- 已知函数f(x)=xlnx,g(x)=-x2+ax-3. (Ⅰ)求函数f(x)的最小值; (Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围; (Ⅲ)证明:对一切x∈(0,+∞),都有lnx
- 已知焦点在X轴上的双曲线过点P(四倍根号二,负三)且点Q(零,五)和两焦点的连线互相垂直,求双曲线标准方程
- 设点M式线段BC的中点,点A在直线BC外,→ˆBC²=16,|→ˆAB+→ˆAC|=|→ˆAB-→ˆAC|,则|→ˆAM|=
- 一道高中数学题【求思路】
- 求点到平面的距离的思路和方法,直线到平行平面的距离思路和方法,两个平行平面的距离的思路和方法,异面直线的距离的思路和方法,问题有点多,但是我出高分,请回答的人尽量说得通俗简单,我人笨…复制来的答案我不要的哦…请原创…谢谢!
- 高中变反函数问题
- 八年级语文《台阶》 1、台阶修好后,父亲为什么反而觉得“不自在”了?
- 英语翻译
猜你喜欢