![](http://hiphotos.baidu.com/zhidao/pic/item/472309f79052982266a92b41d4ca7bcb0b46d49d.jpg)
如图:连接OA,OB,
∵PA、PB为⊙O的切线,
∴OA⊥AP,OB⊥BP,PA=PB,
故PC⊥AB,且AC=BC=
1 |
2 |
1 |
2 |
由勾股定理得OA=
AC2+OC2 |
42+32 |
∵∠1+∠2=90°,∠2+∠OAB=90°,
∴∠OAB=∠1,
在Rt△AOC与Rt△POA中,
∠OAB=∠1,∠2=∠2,
∴Rt△AOC∽Rt△POA,
故
PA |
AC |
OA |
OC |
5×4 |
3 |
20 |
3 |
故选B.
20 |
3 |
25 |
3 |
1 |
2 |
1 |
2 |
AC2+OC2 |
42+32 |
PA |
AC |
OA |
OC |
5×4 |
3 |
20 |
3 |