
如图:连接OA,OB,
∵PA、PB为⊙O的切线,
∴OA⊥AP,OB⊥BP,PA=PB,
故PC⊥AB,且AC=BC=
| 1 |
| 2 |
| 1 |
| 2 |
由勾股定理得OA=
| AC2+OC2 |
| 42+32 |
∵∠1+∠2=90°,∠2+∠OAB=90°,
∴∠OAB=∠1,
在Rt△AOC与Rt△POA中,
∠OAB=∠1,∠2=∠2,
∴Rt△AOC∽Rt△POA,
故
| PA |
| AC |
| OA |
| OC |
| 5×4 |
| 3 |
| 20 |
| 3 |
故选B.
| 20 |
| 3 |
| 25 |
| 3 |

| 1 |
| 2 |
| 1 |
| 2 |
| AC2+OC2 |
| 42+32 |
| PA |
| AC |
| OA |
| OC |
| 5×4 |
| 3 |
| 20 |
| 3 |