已知f(x)=x2+x+q,若 f(f(x))=0有唯一解,求q
人气:175 ℃ 时间:2020-05-08 01:38:37
解答
答案是-1/4吧!
首先不妨先把f(f(x))=0里面的f(x)设成a,则问题就形成求f(a)=0有唯一解即a有唯一值.
而作为f(a)=a²+a+q=0有唯一解,当且仅当对应二次函数f(a)=a²+a+q与x轴仅有一个交点
且交点即为对称轴a=-1/2时取得,所以可确定a的值为-1/2
所以问题转化为求f(f(x))=0里面的f(x)=a=-1/2有唯一解
即x2+x+q+1/2=0有唯一解,同上理当且判别值△=1-4(q+1/2)=0时,上式有唯一解
求得q=-1/4
推荐
猜你喜欢
- 一项工程独做,甲队要十天完成,乙队要15天完成,甲乙两队的工作效率比是多少?
- 求括号的数 2,2,1,0.25 ,()
- 英语翻译
- 已知甲,乙,丙,三个数的和是36甲数比乙数的2倍大1,乙数的½恰好等于丙,则甲乙丙三个数分别为
- 大雪纷纷扬扬地下了起来.改成比喻句谢谢!
- 负数集是什么意思
- (理)与A(-1,2,3),B(0,0,5)两点距离相等的点P(x,y,z)的坐标满足的条件为_.
- 英语翻译