数学不等式证明
a,b,c是三角形三条边,求证a²/(2b²+2c²-a²) + b²/(2c²+2a²-b²) + c²/(2a²+2b²-c²) >=1
人气:152 ℃ 时间:2019-12-13 18:01:53
解答
令x=2b²+2c²-a²>=(b+c)^2-a^2>0 (a,b,c是三角形三条边) 同理设y=2c²+2a²-b² z=2a²+2b²-c²
则x,y,z>0 解出a^2=(2y+2z-x)/9 b^2=(2x+2z-y)/9 c^2=(2x+2y-z)/9 带入 左式=2/9(y/x+x/y+z/x+x/z+y/z+z/y)-1/3>=12/9-1/3=1
推荐
猜你喜欢
- 王奶奶用篱笆靠墙围了一个半圆形的鸡场.篱笆的全长为28.26米,鸡场的面积是多少平方米?
- 有一堆钢管共18层,上面第一层有5根,下面第一层都比上一层多一根,这堆钢管共有多少根?
- “澳大利亚是世界上唯一覆盖整个大陆的国家,从北到南距离为3220公里,从东到西3860公里,面积大体相当于
- 铁丝在氧气中燃烧的化学方程式可以读作
- 在100克盐水中,盐与水的比是1:9,那么盐水中水的质量是?甲乙两数的比是5比4,如果甲数是40,则乙数是?
- 巧连数中的破麦剖梨是什么意思?
- 习题19.2 1——3题答案
- 在一条长2500米的公路两侧架设电线杆,每隔50米架一根(两端都架设).