A.若x为有理数,则-x也为有理数,∴f(-x)=f(x)=1,
若x为无理数,则-x也无有理数,∴f(-x)=f(x)=π,∴恒有f(-x)=f(x),∴函数f(x)为偶函数.∴A正确.
B.设T为一个正数.当T为无理数时,有f(0)=1,f(0+T)=f(T)=π,∴f(0)=f(0+T)不成立,∴T不可能是f(x)的周期;
当T为有理数时,若x为有理数,易知x+kT(k为整数)还是有理数,有f(x+T)=f(x),
若x为无理数,易知x+kT(k为整数)还是无理数,仍有f(x+T)=f(x).综上可知,任意非0有理数都是f(x)的周期.此命题也是对的.
C.由分段 函数的表达式可知,当x为有理数时,f(x)=1,当x为无理数时,f(x)=π,
∴函数的最大值为π,最小值为1,∴C正确.
D.当x为有理数时,f(x)=1,则f[f(x)]=f(1)=1,此时方程成立.
当x为无理数时,f(x)=π,则f[f(x)]=f(π)=π,∴D错误.
故选:D.