>
数学
>
在R上可导的函数f(x)=
1
3
x
3
+
1
2
ax
2
+2bx+c,当x∈(0,1)时取得极大值.当x∈(1,2)时取得极小值,则
b−2
a−1
的取值范围是( )
A.
(
1
4
,1)
B.
(
1
2
,1)
C.
(−
1
2
,
1
4
)
D.
(
1
4
,
1
2
)
人气:474 ℃ 时间:2019-09-26 00:25:29
解答
∵f(x)=
1
3
x
3
+
1
2
a
x
2
+2bx+c
,∴f′(x)=x
2
+ax+2b,
设x
2
+ax+2b=(x-x
1
)(x-x
2
),(x
1
<x
2
)
则x
1
+x
2
=-a,x
1
x
2
=2b,
因为函数f(x)当x∈(0,1)时取得极大值,x∈(1,2)时取得极小值
∴0<x
1
<1,1<x
2
<2,
∴1<-a<3,0<2b<2,-3<a<-1,0<b<1.∴-2<b-2<-1,-4<a-1<-2,
∴
1
4
<
b−2
a−1
<1
,
故选A.
推荐
在R上可导的函数f(x)=1/3x^3+1/2ax^2+2bx 当x属于(0,1)时取得极大值,当x属于(1,2)时取得极小值 求根号(a^2+b^2+6a+9)的取值范围
已知f(x)=1/3x+1/2ax+2bx+c(a,b,c∈R),且函数f(x)在区间(0,1)上取得极大值,
已知函数已知f(x)=1/3x^3+1/2ax^2+bx+c在x1极大值,x2极小值,
已知f(x)=1/3x^3+1/2ax^2+bx+c在x1极大值,x2极小值,x1(-1,1),x2(2,4),a+2b
已知函数f(x)=1/3x^3+1/2ax^2+2bx+c当x∈(0,1)时函数f(x)取得最大值,当x∈(1,2)时函数f(x)取得最小值,则m(b-2)/(a-1)的取得范围为_________
i don't want to have a f_____ with my cousin(写出下列单词的适当形式) 为什么
一种限制性酶只能识别一种核苷酸序列么
用通俗易懂的英语介绍伦敦(少点)
猜你喜欢
我敬佩的一个人要妈妈
一个四位数是奇数,它的首位数字小于其余各位数字,而第二位数字大于其他各位数字,第三位数字等于首末两位数字的和的两倍,这个四位数是 _ .
— They look worried.What's wrong with them?— It seems that they something important.
谢谢你邀请我的两种英语表达方式.只有一种:Thank you for your invitation 求另一种
把一张长是8.28分米的长方形铁皮剪开,正好可以做成一个无盖的铁皮水桶,求这个水桶的表面积
the children are not playing games withe their teacher
已知2a-3b=1则10-2a+3b=?
请根据材料,以“回报”为话题写一篇800字作文
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版