求解一道高数重积分计算题,
计算二重积分∫∫|x^2+y^2-1|dσ,其中积分区域D={(x,y)|0≤x≤1,0≤y≤1}.π/4 - 1/3 .请写出解题步骤,
谢谢楼下的回答,你这方法我想过了,不过感觉太复杂了(还有r=tanθ 是错的,应该是r=secθ ).
我用了一个方法解决这一问题就是在去掉绝对值∫∫(x^2+y^2-1)dσ先对积分区域D={(x,y)|0≤x≤1,0≤y≤1}作积分然后再去掉∫∫(x^2+y^2-1)dσ对积分区域D'(四分之一圆区域)所作积分,我自己认为是可行的。
人气:344 ℃ 时间:2020-06-13 05:42:26
解答
用极坐标
相当于积|r^2-1|/2 d(r^2)
先取负,积1/4圆弧内
后取正,r=1到r=secθ θ为0到π/4
r=1到r=cscθ θ为π/4到π/2
推荐
猜你喜欢
- 对别人诉说心中的不满是什么成语
- {an}是等比数列,a5=2S4+7,a6=2S5+7,则公比q的值为?
- l'm ___ to see the doctor (go) 用正确形式填空
- 厦门的诗句有哪些
- 如图所示,一子弹以水平速度射入放置在光滑水平面上原来静止的木块,并留在木块中,在此过程中子弹钻入木块的深度为d,木块的位移为s,木块对子弹的摩擦力大小为F,则木块对子弹的
- 把“黑,白,绿,红,碧,黄,青,紫”这几个字分别填在下面的诗句中.
- 我国现行的个人所得税发自2011 9 1若甲每月的工资额
- 发闾左谪戍渔阳九百人解释