一道有关中值定理的高数题求解答
f(x)在[a,b]上可导,f(a)=f(b)=1,求证:存在c,d∈(a,b),使得[e^(c-d)][f(d)+f'(d)]=1
人气:322 ℃ 时间:2020-06-23 18:20:06
解答
[e^xf(x)]'=e^x[f(x)+f'(x)],对e^xf(x)在区间[a,b]上用拉格朗日中值定理,存在d∈(a,b),使得
e^d[f(d)+f'(d)]=(e^bf(b)-e^af(a))/(b-a)
即e^d[f(d)+f'(d)]=(e^b-e^a)/(b-a) ①
再对e^x在区间[a,b]上用拉格朗日中值定理,存在c∈(a,b),使得
(e^b-e^a)/(b-a)=e^c ②
有①②得
e^d[f(d)+f'(d)]=e^c
即e^{d-c}[f(d)+f'(d)]=1
不知道是不是你打错了,我的是e^{d-c}而不是e^{c-d}
推荐
- 一条高数题,有关中值定理的
- 设f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=∫xe^(1-x)f(x)dx(上限1,下限0),证明必存在ζ∈(0,1),使f'(ζ)=(1-ζ^(-1))f(ζ).
- 一题高数题,微分中值定理那块的
- 高数证明题,关于中值定理
- 求解两道高数中值定理题
- clothes和clothing有什么区别?
- 6x-x∧2=5求步骤
- 是道C语言编程题,读入20个整数,统计非负数个数,并计算非负数之和
猜你喜欢