> 数学 >
在△ABC中,若sinA+sinB=sinC•(cosA+cosB),试判断△ABC的形状.
人气:102 ℃ 时间:2019-08-19 17:18:40
解答
∵sinB=sin[180°-(A+C)]=sin(A+C)=sinAcosC+cosAsinC,
又∵sinA+sinB=sinC•(cosA+cosB),
∴sinA+sinAcosC+cosAsinC=sinCcosA+sinCcosB,
∴sinA=sinCcosB-sinAcosC,
在△ABC中,sinA=sin(B+C),
∴sin(B+C)=sinCcosB-sinAcosC,即sinBcosC+cosBsinC=sinCcosB-sinAcosC,
∴cosC(sinB+sinA)=0,
∵sinB>0,sinA>0,
∴cosC=0,
∴a2+b2=c2
∴△ABC是直角三角形.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版