∵sinB=sin[180°-(A+C)]=sin(A+C)=sinAcosC+cosAsinC,
又∵sinA+sinB=sinC•(cosA+cosB),
∴sinA+sinAcosC+cosAsinC=sinCcosA+sinCcosB,
∴sinA=sinCcosB-sinAcosC,
在△ABC中,sinA=sin(B+C),
∴sin(B+C)=sinCcosB-sinAcosC,即sinBcosC+cosBsinC=sinCcosB-sinAcosC,
∴cosC(sinB+sinA)=0,
∵sinB>0,sinA>0,
∴cosC=0,
∴a2+b2=c2,
∴△ABC是直角三角形.