若定义在R上的偶函数f(x)满足f(x+1)=-f(x)且在区间[-1,0]上递增
则A.f(3)
人气:409 ℃ 时间:2019-08-19 14:25:54
解答
f(3)=-f(2)=f(1)=f(-1)
f(2)=-f(1)=f(0)
f(根号2)=-f(根号2-1)=f(根号2-2)
-1<根号2-2<0
所以f(3)<f(根号2)<f(2)
所以选A
推荐
- 定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则( ) A.f(3)<f(2)<f(2) B.f(2)<f(3)<f(2) C.f(3)<f(2)<f(2) D.f(2)<f(2)<f(3)
- 定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则( ) A.f(3)<f(2)<f(2) B.f(2)<f(3)<f(2) C.f(3)<f(2)<f(2) D.f(2)<f(2)<f(3)
- 定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则比较f(3)f(2)f(√2)的大小
- 定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间{-1,0}上为递增,则 f(3),f(2),f(√2)大小
- 定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上递增,则:f(3),f(√2),f(2)的关系
- 请你用一个成语形容一个人很开心却笑不出来的样子
- 环保节能征文
- 寒潮是什么天气系统
猜你喜欢