> 数学 >
y=sin²X+2sinX*cosX+3COS²X的最大值是?
人气:290 ℃ 时间:2020-02-03 05:48:20
解答
解y=sin^2X+2sinX*cosX+3COS^2X
=sin^2X+COS^2X+2sinX*cosX+2COS^2X
=1+sin2x+2COS^2X
=2+sin2x+2COS&^2X-1
=2+sin2x+cos2x
=2+√2sin(2x+π/4)
≤2+√2

y=sin²X+2sinX*cosX+3COS²X的最大值是
2+√2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版