设f(λ)=λ/(1+λ)(λ≠-1,0).数列{bn}满足b1=1/2,bn=f(bn-1)注bn-1 n-1是角标n≥2
求证数列{1/bn}为等差 此问已求1/bn=n+1
记cn=(1/2)^(n-1)乘以(1/bn-1),数列{cn}的前项和为Tn,求证当n≥2时,3≤Tn+cn
人气:329 ℃ 时间:2020-03-18 18:40:26
解答
Cn = n* (1/2)^(n-1),由错位相减法求Tn:
Tn = 1 + 2* (1/2) + 3* (1/2)²+ 4* (1/2)³ +...+ n* (1/2)^(n-1),——①
1/2 * Tn = 1/2 + 2* (1/2)²+ 3 (1/2)³ +...+ (n-1)* (1/2)^(n-1) + n* (1/2)^n,——②
①-②,得:1/2 * Tn = 1+ 1/2 + (1/2)² + (1/2)³+...+(1/2)^(n-1) - n* (1/2)^n,
求得 Tn = 4 - (2n+4)* (1/2)^n
所以 Tn + Cn = 4 - (2n+4)* (1/2)^n + (2n)* (1/2)^n = 4 - 4* (1/2)^n = 4*{1- (1/2)^n},
显然 Tn + Cn < 4,
而由于当n≥2时,(1/2)^n ≤ 1/4 ,得证 Tn + Cn ≥ 3 .
推荐
- 设数列{An}满足A1+3A2+3²A3+******+3^(n-1)An=n/3
- 1.设{An}是公比大于1的等比数列,Sn为数列{An}的前N项和,已知S3=7,且A1+3,3A2,A3+4构成等差数列
- 设等差数列{an}的前n项和为Sn,若S4≥10,S5≤15,则a4的最大值为_.
- 1,等比数列{an}的前n项,前2n项,前3n项的和分别为ABC,则
- {an}是d不等于0的等差数列,a2^2+a3^2=a4^2+a5^2,S7=7,求an
- mime and guess 翻译成汉语怎么说?
- 小明和小芳在讨论“能否用蜡烛燃烧法来粗略测定空气中氧气的含量”这一问题时,小芳认为:通过图l装置,用蜡烛燃烧法测得空气中氧气的含量会 _ (填“偏 高”、“偏低”或“不变”
- 英语翻译
猜你喜欢