直角坐标系中,向量a=(x+2,y),向量b=(x-2,y),且|a|-|b|=2.求点M(x,y)的轨迹C的方程
人气:120 ℃ 时间:2020-04-10 19:01:56
解答
直接用(x+2)的平方加y的平方开根号减去(x-2)的平方加上y的平方开根号等于2,整理后可得C的轨迹方程
推荐
- 设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y−1),a⊥b,动点M(x,y)的轨迹为E.求轨迹E的方程,并说明该方程所表示曲线的形状.
- 若向量a=(x-2,y),b=(x+2,y).且绝对值a+绝对值b=8求点M(x,y)的轨迹C的方程
- 在平面直角坐标系xOy中,点M(-6,8),动点p(x,y)满足向量MP*向量OP=11:求动点p的轨迹方程
- 直角坐标平面xoy中,若定点A(1,2)与动点P(x,y)满足OP•OA=4,则点P的轨迹方程是 _.
- 在平面直角坐标系中,已知向量a=((1/4)x,y+1),向量b=(x,y-1),a垂直b,动点M(x,y)的轨迹为E.是否存在圆...
- (sin40°×sin130°)÷(cos4175°- sin4175) PS:分母上的4是次方
- 初二 化学 科学 请详细解答,谢谢!(29 10:8:8)
- 求一段英语对话,最好是4个角色的,一个人最好有个五句话
猜你喜欢