已知数列{a
n}的通项公式为a
n=
(n∈N
∗).
(1)求数列{a
n}的最大项;
(2)设b
n=
,求实常数p,使得{b
n}为等比数列;
(3)设m,n,p∈N
*,m<n<p,问:数列{a
n}中是否存在三项a
m,a
n,a
p,使数列a
m,a
n,a
p是等差数列?如果存在,求出这三项;如果不存在,说明理由.
(1)由题意可得 an=2×3n+23n−1=2+43n−1,随着n的增大而减小,所以{an}中的最大项为a1=4.(2)bn=an+pan−2=2+43n−1+p43n−1=(2+p)(3n−1)+44=(2+p)3 n+(2−p)4,若{bn}为等比数列,∴b2n+1-bnbn+2=0(n∈...