高数证明:f(x)在[0,2a]上连续,f(a)=f(2a),f(a)不等于f(0),证明存在b使f(b)=f(a+b)不会写,麻烦解细点
人气:326 ℃ 时间:2020-09-24 12:48:30
解答
令 F(x) = f(a+x)-f(x) 则F(x)在[0,2a]上连续
F(a) = f(2a)-f(a)=f(0)-f(a)
F(0) = f(a)-f(0) =-F(a)
由闭区间连续函数介值定理,必然存在一点ξ,使得F(X)的值为0
即是题目所要你证明的等式f(ξ)=f(ξ+a)
推荐
- 高数证明题!设f(x),g(x)在[a,b]连续且可导,g'(x)不等于0,证明存在ζ∈(a,b)
- f(x)为非0函数高数f(x+y)=f(x)f(y) 当x=0时的导数为1证明f(x)的导数等于f(x)
- 证明a的平方-b的平方+2a+1不等于0,则a+b不等于-1
- 高数证明题,当X大于等于0时,e的x平方大于等于1+X.
- 已知f(x)=(e^x+e^-x)/2,g(x)=4[f(x)]^2-4a*f(x)+2a^2-2(a大于等于0)1)证明函数f(x)在(负无穷大,0]上单调递减,在[0,正无穷大)上单调递增;(2)分别求证f(x)和g(x)的最小值.只是
- 数独,0.1.3.8.22.63( )说出规律,下一个数是多少?
- 中学数学题(因式分解)
- attraction 何时可数何时不可数
猜你喜欢