由界函数f(x)在[a,b]上Riemann可积的充要条件是f(x)在[a,b]上几乎处处连续的证明
人气:292 ℃ 时间:2019-10-25 02:24:05
解答
评论 ┆ 举报
并不代表百度知道知识人的观点
回答:huangcizheng
圣人
2月9日 16:08 证:因为f(x)在[a,b]上连续,必可在这区间上取得最大值M有最小值m,即对一切x∈[a,b],有m≤f(x)≤M
所以m≤f(xi)≤M(i=1,2,…,n)
因为m=nm/n≤[f(x1)+f(x2)+…+f(xn)]/n≤nM/n=M
由介值定理,存在ξ∈[a,b],使f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n.
揪错 ┆ 评论 ┆ 举报
推荐
猜你喜欢
- 一项工程独做,甲队要十天完成,乙队要15天完成,甲乙两队的工作效率比是多少?
- 求括号的数 2,2,1,0.25 ,()
- 英语翻译
- 已知甲,乙,丙,三个数的和是36甲数比乙数的2倍大1,乙数的½恰好等于丙,则甲乙丙三个数分别为
- 大雪纷纷扬扬地下了起来.改成比喻句谢谢!
- 负数集是什么意思
- (理)与A(-1,2,3),B(0,0,5)两点距离相等的点P(x,y,z)的坐标满足的条件为_.
- 英语翻译