证明向量组线性无关
设A是n阶方针,若存在n维列向量a和正整数k,使得A^k*a=0,A^(k-1)*a!=0,证明:向量组a,A*a,A^2*a,…,A^(k-1)*a线性无关
人气:480 ℃ 时间:2020-02-03 04:50:54
解答
设x1a+x2Aa+x3A^2a+.+xkA^(k-1)a=0.上式左乘以A^(k-1),得x1A^(k-1)a=0,所以x1=0.左乘以A^(k-2),得x2=0.继续做下去,所有的系数都是0.所以向量组线性无关
推荐
- 证明:如果向量组 α、β、γ 线性无关,则向量组 α+β、β+γ、γ+α 也线性无关
- 如果向量组线性无关,证明向量组线性无关.
- 证明:若一个向量组线性无关,则它的任何一个部分向量组也线性无关.
- 设向量组α,β,γ线性无关,证明向量组α,α+β,α+β+γ也线性无关
- 证明如果向量组线性无关,则向量组的任一部分组都线性无关
- 落花生小练笔,写小草的,500字
- 提供一篇关于学习问题的英语作文,词数80--100 ,
- 下列图形中一定是轴对称图形的是()
猜你喜欢